The long and short flavodoxins: I. The role of the differentiating loop in apoflavodoxin structure and FMN binding.

نویسندگان

  • Jon López-Llano
  • Susana Maldonado
  • Marta Bueno
  • Anabel Lostao
  • Maria Angeles-Jiménez
  • Mariá P Lillo
  • Javier Sancho
چکیده

Flavodoxins are well known one-domain alpha/beta electron-transfer proteins that, according to the presence or absence of a approximately 20-residue loop splitting the fifth beta-strand of the central beta-sheet, have been classified in two groups: long and short-chain flavodoxins, respectively. Although the flavodoxins have been extensively used as models to study electron transfer, ligand binding, protein stability and folding issues, the role of the loop has not been investigated. We have constructed two shortened versions of the long-chain Anabaena flavodoxin in which the split beta-strand has been spliced to remove the original loop. The two variants have been carefully analyzed using various spectroscopic and hydrodynamic criteria, and one of them is clearly well folded, indicating that the long loop is a peripheral element of the structure of long flavodoxins. However, the removal of the loop (which is not in contact with the cofactor in the native structure) markedly decreases the affinity of the apoflavodoxin-FMN complex. This seems related to the fact that, in long flavodoxins, the adjacent tyrosine-bearing FMN binding loop (which is longer and thus more flexible than in short flavodoxins) is stabilized in its competent conformation by interactions with the excised loop. The modest role played by the long loop of long flavodoxins in the structure of these proteins (and in its conformational stability, see Lopez-Llano, J., Maldonado, S., Jain, S., Lostao, A., Godoy-Ruiz, R., Sanchez-Ruiz, Cortijo, M., Fernandez-Recio, J., and Sancho, J. (2004) J. Biol. Chem. 279, 47184-47191) opens the possibility that its conservation in so many species is related to a functional role yet to be discovered. In this respect, we discuss the possibility that the long loop is involved in the recognition of some flavodoxin partners. In addition, we report on a structural feature of flavodoxins that could indicate that the short flavodoxins derive from the long ones.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bba 66291 Studies on Flavin Binding in Flavodoxins

I. Stable apoproteins have been prepared from Peptostreptococcus elsdenii, C. pasteurianum and Clostridium MP flavodoxins by dialysis of the native proteins against 2 M KBr at pH 3.9 and 3" lO-4 M EDTA. The apoproteins each bind I molecule of FMN to give complexes identical with the native flavodoxins. 2. Binding causes almost complete quenching of both protein and FMN fluorescence. This proper...

متن کامل

Common conformational changes in flavodoxins induced by FMN and anion binding: the structure of Helicobacter pylori apoflavodoxin.

Flavodoxins, noncovalent complexes between apoflavodoxins and flavin mononucleotide (FMN), are useful models to investigate the mechanism of protein/flavin recognition. In this respect, the only available crystal structure of an apoflavodoxin (that from Anabaena) showed a closed isoalloxazine pocket and the presence of a bound phosphate ion, which posed many questions on the recognition mechani...

متن کامل

Last in, first out: the role of cofactor binding in flavodoxin folding.

Although many proteins require the binding of a ligand to be functional, the role of ligand binding during folding is scarcely investigated. Here, we have reported the influence of the flavin mononucleotide (FMN) cofactor on the global stability and folding kinetics of Azotobacter vinelandii holoflavodoxin. Earlier studies have revealed that A. vinelandii apoflavodoxin kinetically folds accordi...

متن کامل

Conformational Dynamics of Escherichia coli Flavodoxins in Apo- and Holo-States by Solution NMR Spectroscopy

Flavodoxins are a family of small FMN-binding proteins that commonly exist in prokaryotes. They utilize a non-covalently bound FMN molecule to act as the redox center during the electron transfer processes in various important biological pathways. Although extensive investigations were performed, detailed molecular mechanisms of cofactor binding and electron transfer remain elusive. Herein we r...

متن کامل

Dissecting the energetics of the apoflavodoxin-FMN complex.

Many flavoproteins are non-covalent complexes between FMN and an apoprotein. To understand better the stability of flavoproteins, we have studied the energetics of the complex between FMN and the apoflavodoxin from Anabaena PCC 7119 by a combination of site-directed mutagenesis, titration calorimetry, equilibrium binding constant determinations, and x-ray crystallography. Comparison of the stre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 279 45  شماره 

صفحات  -

تاریخ انتشار 2004